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We develop a method to derive the macroscopic equations governing the evolu- 
tion of the mean field in continuous turbulent media. The approach is based on 
the concept of local equilibrium, which enables one to evaluate averages of non- 
linear terms and to close the averaged equation. Examples include the 
Kuramoto-Sivashinsky equation and its modifications. 

KEY WORDS: Chaos; macrodynamics;  invariant distribution; mean field; 
local equilibrium. 

1. I N T R O D U C T I O N  

The major achievement of statistical physics is the possibility to ignore the 
fast, irregular, and almost unobservable dance of molecules when modeling 
phenomena taking place at scales of centimeters and seconds. Although it 
is almost impossible to trace the billions of billions of molecules involved, 
we are able to predict the flow of a fluid or gas quite accurately. However, 
this impressive victory is not final, and when we deal with these fluids and 
gases at scales of kilometers and hours, we fail to follow the detailed evolu- 
tion. Moreover, not only can we not predict the long-time, large-scale 
evolution of a turbulent flow, but we do not need it even if it is given from 
elsewhere. When satellite shots of the atmosphere are analyzed, no one is 
interested in the fast small-scale motions: what is important is the global 
picture described by the average velocity, pressure, etc. 

But if we only need average fields, it is natural to omit fast irregular 
fluctuations and develop self-consistent equations for averages. This 
approach implies averaging the governing equations over space, time, or 
initial conditions, and due to nonlinearity, we inevitably face a problem of 
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closure: to evaluate ( f (u ) }  from (u}.  An example is the Kuramoto-  
Sivashinsky equation (1'2) 

u,+uu.~+uxx+u ...... =0 ,  O<~x<~L (1) 

leading to a mean-field equation 

~b/)t  q- l ~ u 2 ) ,  c q- ~/d)x x ~- flU) ........ ~--- 0 (2) 

Generally, there are two ways to close it: 

1. We multiply Eq. (1) by u and average it: 

~U2)t  + 2(b /3)x  -~- 2~U" U.rx) -~- 2~U" U ........ ) = 0 

thus obtaining the needed equation for (u  z }. Unfortunately, new unknown 
terms arise, e.g., (u3}, for which we should also write an equation, and so 
on. The result is an infinite chain of "equations for moments," resembling 
in a sense the BBGKY chain in statistical mechanics. At some step the 
chain is truncated using more or less reasonable suppositions, and we get 
a closed system. This method is quite successfully used in hydrodynamics 
(see, e.g., ref. 3). 

2. Consider a case when (u}(x,  t) varies very slowly and gradually 
in space and time. (Apparently this is not the case in hydrodynamics. (41) 
Then the chaotic microscopic field u(x, t) is near local equilibrium, with 
characteristics specified by a slow smooth "macrofield" (u  } - U. This local 
equilibrium determines a function ( u 2 } = q ~ ( ( u } ) ,  which enables us to 
close Eq. (2) and obtain a self-consistent "macrodynamics" 

u , + � 8 9  uxx+  u ........ = o  

This second approach, when it can be applied, seems more natural and 
effective. It was originally applied to the cellular automaton (lattice gas) 
and made it possible to derive equations of hydrodynamic type, (5) and was 
then developed in, e.g., refs. 6 and 7. Similar ideas were used in the 
investigation of coherent oscillations in large oscillator communities, 191 
though in this case the average field is spatially uniform and only oscillates 
in time. Also there are no conserved quantities and separation of scales is 
ensured by the proximity of the system to the transitient point. 

In this paper we develop this approach to partial differential equations 
[-such as (1)] and consider grounds for the "turbulent" microfield u to 
possess properties close to those of the local equilibrium with parameters 
specified by the slow and smooth "macrofield" U(x, t ) - ( u } ( x ,  t). The 
"macrofield" is shown to be associated with conserved quantities, i.e., 
integrals of motion. 
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2. THE C O N C E P T  OF LOCAL E Q U I L I B R I U M  

Let us again take the Kuramoto Sivashinsky equation (KSE) ( l )  as 
an example. There are three ways of averaging: over ensemble (of initial 
conditions), over time, and over space. We will mostly use ensemble 
averaging, which will be denoted as ~. ). 

Now let us consider a variety of initial conditions which differ in 
details but form a smooth average profile U(x, t ) -  ~u~(x, t). Let all these 
initial fields start evolving by the action of the KSE. The mean profile will 
evolve, too, and we suppose that there is some smooth, slow mot ion- -  
which is what we want to describe. Moreover, we suppose that if the spatial 
domain is very large and the initial average field U very smooth, the evolu- 
tion of U(x, t) will be very slow and gradual. In other words, suppose that 
we can have as smooth and slow U(x, t) as we want. 

Let the spatial scale at which U(x, t) substantially varies be denoted .9, 
and .9>>Lc, where L~. is correlation length of the chaotic microfield 
u -  ~u ~. Now let us "extract" a domain of the length l ~ ,9, but l >> Lc, on 
which U(x, t) is almost constant. Denote this constant as ~ to distinguish 
it from ( u ) ,  which is a slowly varying mean field. Consider now "a model" 
of this domain-- the  KSE on a domain of length l, with periodic boundary 
conditions, which makes it possible to create a uniform mean field 
~u)(x, t ) =  O=const.  This can be achieved by using uniform (in a sense) 
initial conditions of the form u(x, 0 ) =  ~+~(x) ,  where ~(x) is random 
microfield with distribution independent of x and quickly decaying spatial 
correlations. In this case, as numerical experiments indicate, the KSE 
exhibits spatiotemporal chaos, i.e., spatial correlations remain quickly 
decaying. These two features--the statistical uniformness and decay of 
spatial correlations--provide that~9~: 

1. u(x, t) remains "spatially statistically uniform" for any time t, i.e., 
the distribution p(u l t )  remains independent of x. 

2. This distribution evolves under the action of dynamics and 
converges to the invariant distribution pt(u). The convergence rate is 
asymptotically independent of l for l>>L C, thus, after some time Tc 
independent of l the distribution is almost indistinguishable from the 
invariant o n e  pt. 2 

3. This invariant distribution is asymptotically independent of l: 
FlPt-P[I "" e x p ( - l i L t ) ,  where p is the limit distribution. 

4. If the boundary conditions are not periodic, the statements 1-3 are 
valid far enough from the boundaries. The distribution at a distance d from 
the boundaries differs from p only by O(exp( -d /Lc )  ). 

2 A rigorous analysis of a similar statement for cellular automata was done in ref. 10. 
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But the KSE possesses an integral of motion: t7 = (1/l) ~o u dx is con- 
served (if boundary conditions are not periodic, it is "almost conserved"). 
That is, the attractor to which the solution converges depends on this 
integral. It plays the role of a model parameter, specifying the structure and 
properties of the attractor--e.g., an invariant distribution. This means that 
if we take an ensemble of initial data with the same fi = (1/l) ~t o u dx, then 
we will get the invariant distribution depending on t~: p(u)= p,(u). 

It can be easily seen that ~i = ( u ) .  Indeed, because both t~ and ( u )  are 
constants, we get 

_ 1 s  l 

o ( u ) & = ( u )  

Thus 

and so 

p(u) = p <=>(u) - p (u) 

= f  2p(u)d  = f r (3) 

Therefore, if we consider a domain of length l >> L c and a "spatially statisti- 
cally uniform" ensemble of initial conditions with the same ~ = (1/l) ~o u dx, 
then after some fixed time Tc. the distribution will have converged to the 
invariant one and (u  2) will become a function of ( u ) :  (u  z)  = ~b((u)). 
The actual form of r depends on p<,>, but is independent of l (for l>>Lc) 
and initial conditions. 

Return to the case when U(x, t)= (u)(x,  t) slowly varies in space and 
time. It is natural to expect that if ( u )  is almost constant on the domain 
of the length >>Lc and evolves at a time scale > To, then the relation 
(u  2) = ~ ( ( u ) )  holds. Indeed, as the field is almost statistically uniform, 
statements 1 4  are expected to hold. Thus, if the evolution of the mean 
field is so slow that during the "convergence time" To, (u)(x,  t) is nearly 
a constant, then the distribution will have enough time to have converged 
to the invariant one for which (3) holds. In other words, the statistical 
characteristics on the given domain, e.g., the invariant distribution, (u2) ,  
etc., are close to those of the local equilibrium (specified by P<u>) and thus 
accommodate to the slowly evolving mean field. 

Unfortunately, this approximation is not valid near the boundaries 
where statistical uniformity breaks down. 

Certainly, spatial variations of U(x, t) disturb the correspondence (3), 
and in the limit ~2 --* m, when --- ,~ Uxx '~ Ux'~ U this influence may be 
accounted for as an additional term S(U, Ux)= O(1/~): 

(u2) (x ,  t) = ~b((u)(x, t)) + S((u) ,  (u)x) (4) 
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which allows us to close the averaged equation (2): 

u,+ �89 u ~ +  u . . . .  + �89 UxL=O (5) 

So if there are smooth slow motions of the mean field U, they will be 
described by Eq. (5). If it fails to produce such a solution, then our 
suppositions are wrong and there is no macrodynamics. 

We should stress that (5) is valid only in the limit s --. oo, or U~ -+ 0, 
when the macrofield is smooth enough so that the microfield is almost 
statistically uniform. 

As the function ~b is a characteristic of a spatially uniform attractor on 
a rather small (,-~ 10Lc) domain with periodic boundary conditions, it can 
be easily calculated--see Section 4. 

However, the Kuramoto Sivashinsky equation possesses Galilean 
invariance, which allows one to obtain q5 analytically. Indeed, let us know 
~(0). Then, introduce v(x, t) = u(x, t ) -  (t, thus ~ v d x =  0. Substituting 
u(x, t) = v(x, t) + ~ into the KSE, we get 

v, + fry x + vvx + vxx + v . . . . .  = 0 

Obviously w(x, t) =-- v(x +ftt ,  t) obeys the Kuramoto-Sivashinsky equation 

and 

w, + WWx + Wxx + w . . . .  = 0 

<w>=e= 7 w(x,O)dx=O 

Thus (wX)=r Let us now write (u2 )  as an average over initial 
conditions ui: 

( u2 ) ( x  ' t)=~!im~ 1 EN U2(X, t)  

1 f 
= l i r a  ~ E  [ u + w i ( x - f t t ,  O] 2 

1 N 1 N 
= t7 z + 2fi lim ~ w i ( x -  ~t, t) + lirn Z w2( x -  ~t, t) 

= ~ 2 + 2 ~ - ( w ) ( x - ~ t ,  t ) +  ( w 2 ) ( x - f t t ,  t) 

= bl2 "~ - ( W2 F ( X - -  (tt, t )  

Due to spatial statistical uniformity, the result is independent of x. As for 
t, all ensemble averages converge to their stationary values (corresponding 
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to the invariant distribution) and almost reach them for t ~ Tc. For  these 
stationary averages, ( w : )  = qs(0); thus, 

(u 2) =~2+ (w 2) = (u)2 + qs(0) 

which means that q~(z) = z 2 + 45(0). 
Substituting this ~ into Eq. (5), we obtain a Burgers-like equation: 

U, + UUx + U~x + U ........ + �89 Ux)x=0  (6) 

Had we neglected the dependence of (u  2) on ( u ) x ,  i.e., the term S in 
Eq. (4), the averaged equation would be the KSE again. According to its 
properties of stochastization, the mean field U would sooner or later 
became as ragged and quickly fluctuating as the turbulent microfield u. 
This seems impossible; thus, this term is very important for the long-time 
evolution and should be retained. 

Numerical experiments have shown that 

(u  2) = q S ( f u ) ) - f i ( u ) x  (7) 

that is, S(U, Ux)= -flU.~ with f i~  10, and so Eq. (6) takes the form 

U t -~ UU.~: - Yturb Ux.v q- U ........ = 0 

where the "turbulent viscosity" ~)turb = ] ~ / 2  - -  1 ~ 4. This equation is regular 
(there is no stochastization), and due to the "smoother" --VturbUxx the 
influence of U ........... is inessential. Omitting this term, we obtain ordinary 
Burgers equation 

! Ut -{- U g x  = Yturb Uxx ( 8 )  

The solutions of the Eq. (8) converge to "smoothed" shock wave(s), 
for which Ux is very small everywhere but near the shock(s), where 

t / 1/2 Ux~ --UVt~rb. Our approximation fails due to large gradients, so Eq. (8) 
may cease to hold near shock wave front(s). Fortunately, these fronts are 
very narrow (on the macroscale, i.e., in comparison with ~), and thus we 
may ignore their fine structure--as we want to describe only "macro- 
features." Our theory also becomes invalid near the boundaries, where the 
breakdown of spatial statistical uniformity disturbs the correspondence 
(u  2) = ~ ( ( u ) ) .  But the details of the boundary layer may also be ignored 
if the domain is large enough. 

So we can use Eq. (8), but keeping in mind that it fails to describe the 
detailed structure near the boundaries and shock wave front(s). This was 
confirmed by calculations; see Figs. 1 and 2. It was a surprise that the 
approximation near shocks appeared rather accurate. 
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That the mean field evolution in the KSE is governed by the Burgers 
equation follows from the usual physical postulate that if the original 
model possesses Galilean invariance, then the equation for the mean field 
should retain it, which is only possible if {u 2) is a quadratic function of 
{u) .  This postulate, predicting an averaged nonlinear term, was used by 
Yakhot (l~) and then Zalesky (2' 12)to describe large-scale structures in plain 
the KSE and its modification. Notice that both these works used spatial 
averaging, which does not eliminate fluctuations completely. So their 
resulting Burgers equation included a random external force--in contrast 
with our approach based on ensemble averaging. We should also mention 
the work by Shraiman (~3) in which more advanced models of large-scale 
behavior were elaborated using the Galilean and reflection symmetries. 

3. S P A T I A L  A V E R A G I N G  

So far we have discussed the behavior of the mean field obtained via 
averaging over an ensemble of initial conditions. However, in physics we 
are usually interested in space or time averages related to the evolution 
of a single system. For example, the Kuramoto-Sivashinsky equation 
describes the flow of a thin liquid film down an inclined plane(~): u is the 
film thickness and x the coordinate down the plane. So, for example, the 
weight of the film over a given domain is the spatial average j.h u(x, t) dx. 
The liquid mass that has flowed through the point x is expressed as the 
time average V~o u(x, t)dt (V is the flow velocity), etc. 

Let us denote the spatial average as 

1 [~+'u(x',t) dx' 

In the spatially uniform case it follows from the quick decay of spatial 
correlations that the spatial average converges to an ensemble one: 

] ~,x+l f zlim~ 2ll , x - ,  u(x', t) d x ' =  <u )  - up(u) du 

The case when the mean field {u)(x,  t) varies in space is more complicated 
because now large l will cause additional smoothing. Let us denote 
~(x, t)=-u(x, t ) -  ( u ) ( x ,  t). Though the statistical characteristics of ~ may 
now depend on x, its average is (~ ) (x ,  t ) = 0  for all x, so 

I x+l lira ~(x', t) dx' = 0 
t ~ 2 l  x- t  
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from which it follows that 

( 1 ~  x+l 1 x+t ) 
l i+m+\~G + u(x', t )dX'-Rlf~ , <u>(x', t) dx' = 0  

The ensemble average (u)(x,  t )=  U(x, t) obeys Eq. (8), so the spatially 
averaged field ~(x, t) converges as l ~  oe to a smoothed solution of Eq. (8). 
In other words, it is impossible to describe the evolution of z~(x, t) by one 
equation as was done for (u)(x,  t). 

It should be stressed that fluctuations of fi(x, t) are not entirely 
suppressed, as actually l cannot exceed the finite domain length. On the 
other hand, using spatial averages, we can predict the evolution of the 
mean field in a single run. 

A generalization to the case of time (or both time and space) averaging 
is quite straightforward. 

4. N U M E R I C A L  E X P E R I M E N T S  

These were done according to the following scheme. 

4.1. Ca lcu la t ion  of  q) 

The KSE is integrated on a domain of some moderate (~lOLc) 
length L with periodic boundary conditions. We choose some ( u ) ,  and 
integrate a spatially statistically uniform initial field u(x, O) such that 
( 1 / L ) ~ u ( x , O ) d x = ( u ) .  While integrating we calculating (u  2) as 
l imr+ ~ ( l /T)S~ u2( x, t)dt. Due to spatial statistical uniformity the result 
is independent of x, and we can additionally average it over space: 

which reduces fluctuations. Thus, we obtain a set of points { (u ) ,  (u2)} 
which fit a graph of q5 and calculate its approximation. The result should 
be independent of L; to check this, we recalculate q5 on a longer domain. 
It appeared that L = 125 is enough. 

As the accuracy of numerical integration (controlled mostly by the 
integration step z) was increased, q~ converged to the predicted function 
q~(z) =z2 + C; e.g., ~ ( z ) ~  1.71 +0.9z 2 for z =0.2 and qS(z)~ 1.71 + 0.97z 2 
for r =0.1. 
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4.2. Calculation of the Turbulent Viscosity 

Now we use a large domain (L ~ 100Lc) and initial fields ui(x, 0) of 
the form ui(x, 0)=  U(x, 0 ) +  ~i(x). Here U(x, 0) is a smooth large-scale 
profile and ~(x)  is a realization of a random spatially statistically uniform 
microfield. Then we perform integration for N ~  10,000 initial conditions 
and obtain average fields 

1 N 
1 

U(x, t)=- (u)(x, t) = UiY -i u (x, t) 

1 u 

We expect that in the case ( u ) ~ r  (u2)(x,t)=cb(U(x,t)) - 
flU~(x, t); thus, knowing qs, 3 we can calculate ft. We plotted ( u ; ) -  ~(U) 
vs. U~ and used the slope of the best-fit line as its estimate. Most runs 
yielded f l~  10; thus Vturb ~ 4. Typical plots of (u  2) - q S ( ( u ) )  vs. (u )~  are 
shown in Figs. 1 and 2. 

4.3. Comparison of Predicted Mean Field Evolution with 
Direct Simulation 

We repeated calculations from point 4.2 above for different domains 
and initial profiles. The initial turbulent component ~(x) certainly has 
statistical properties different from those of the local equilibrium; therefore 
our approximation is correct only for t > To, which appeared to be ~30. 
Beginning with this t and (u)(x,  30) we predicted the evolution of the 
mean field using Eq. (8). The results of a typical run are shown in Figs. 1 
and 2; one can see that (far enough from the boundaries) the Burgers 
equation provides a quite accurate approximation. 

5. OTHER EXAMPLES 

Unfortunately, due to the Galilean invariance of the Kuramoto-  
Sivashinsky equation, the small-scale turbulence does not influence 
large-scale motions. Indeed, let us take a smooth initial field u(x, O)= 
U(x, 0) (no random field is added). Denote the spatial scale at which 
U(x, t) substantially varies as s Then, during a very long time t ~ ~ it will 

3 Because we ac tua l ly  average  not  the K S E  bu t  a difference scheme, we should  use the 45 tha t  
was ob ta ined  for this  pa r t i cu la r  difference scheme ins tead of the 45 predic ted for the KSE  

(or ca lcu la ted  for r ~ 0). 
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remain smooth with u x ~ s  -1, b/:c.r s -2, and u .. . . .  ~ s  Therefore its 
evolution can be described by the advection equation 

u, + UU x = 0 

During this period there is still no turbulence; thus, there is no difference 
between micro- and macrofields, u(x, t)= U(x, t), so 

Ut + UUx = 0 
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1.0 

0.5 

0,0 

0.5 

-1.0 

-1,5 

< u  > 

~o ~o ,~o ~bo ~o 
x 

4.0 

3.5 

3.0 

2.5 

2.C 

1. c . 

I.C 

<u2> . < u 2 > - ~ [ < u >  } 

. . . .  ! 

~0 160 4 ~  260 s  -0'?0.2 -d. [  0[0 
X <U  > x 

t = 1 5 0 . 0  

o!i 

1.5 

1,0 

O.S 

0.0 

-0.5 

-l.O 

-I 

< u  > 

x 

4,0- 
< U 2 >  

3.5- 

3.C 

2.C 

L. 5" ..-. '..,.\ 

~.c ;o ~o 1;o ~6o s 
x 

t = 75 .0  

2.0~ 

1.0- 

0.5- 

0.0- 

0.~ c 

<u2> -~ {  <u>  ] 

++ 

++ 

-L~ oto 
< U >  x 

o!, 

4. 2 I 1.1' <u s. <u > 2. <u > - r  I 

~ i 
X X < U >  x 

t = 1 5 . 0  

Fig. I. Left column shows the actual <u>(x, t) (dotted line), obtained as the average of 
10,000 solutions of the KSE, and its approximation as the solution of the Burgers equa- 
tion (fullline). Middle column shows the actual (u2>(x , t )  and its approximation 
d,(<u>)-f l<u>. , ,  f l=10.  The difference < u 2 > - c b ( < u > )  is plotted vs. <u>,. in the right 
column. The initial profile for the Burgers equation is <u> from the bottom panel. Boundary 
conditions are Umr = U, t r=  0 for KSE, and Umr = ( u ) t  r for the Burgers equation. 
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N o w  let us add to the same initial macrofield U some  small-scale tur- 
bulence. The mean  field evo lut ion  will be governed by the Burgers equat ion  
(8). For  t ~ E  (before shock  waves  have formed)  the term U ..... remains 
small  in compar i son  with UUx; thus again 

U, + UU~=O 

In other words,  the evo lut ion  of  a smooth mean field in a large domain  is 
a lmost  uninfluenced by the presence of  small-scale turbulence. This is a 
consequence  of  Gali lean invariance,  which implies <u 2) = ( u ) = +  C. 
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Fig. 2. Same as in Fig. 1, but for a longer domain.  
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It seems much more interesting to study a model where small-scale 
turbulence does influence large-scale evolution. Unfortunately, we do not 
know a suitable physical model, and had to invent one. We tried different 
modifications of the KSE; most of them either did not exhibit chaos or 
small-large scale interaction was too small. For example, in the 
"cubic KSE" 

llU3~ + . . . . . .  u , + ~ ,  ,x u ~ + u  . . . .  = 0  (9) 

chaos was observed only for L(u)l ~> 1.4, and it was obtained that <u 3 ) = 
(u> 3 + 1.28/<u> + O ( < u > - 2 )  + . . . .  The difference <u 3 > -  ( u )  3 appears 
to be very small in comparison with ( u )  3, so the equation governing the 
evolution of the mean field in the presence of turbulence differs only 
slightly from (9). 
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Fig. 3. Plot of <u 2> (top) and (u  Isin u] > (bottom) as functions of <u)  for Eq. (10) in the 
statistically uniform case. The domain length is L = 100 ( [] ) and L = 200 ( • ). Approximating 
curves are 8.16 + 0 .4<u)  4 (top), and 0 ,73<u)  (bottom). 
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The only model that we consider successful is 4 

u, + UUx + (U. Isin ul)xx + Uxx + U . . . .  = 0  (10) 

It exhibits chaos, and, in the range - 1  ~< ( u > ~  1, averaged nonlinear 
terms in the statistically uniform case are approximately (see Fig. 3): 

< u 2 >  = 8 .16 + 0 . 4 < U )  4, <U Isin ut > = 0 . 7 3 ( u )  

4 A rigorous mathematician might argue that the very existence of the classical solution of this 
equation is rather doubtful. We actually integrated and averaged difference equations, i.e., 
CMLs, which obviously have solutions and are insensitive to its smoothness. 
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The influence of mean field gradients is accounted for as in (7): 

<u2)=8.16+O.4<u>4--fl<u>x, <u Isinul)=O.73<u)-7<u) 

Repeating the calculations described in Section4, we estimated /~ [see 
Eq. (7)] ,  which appeared to be much greater than for the KSE: now 
/? ~45 .  The second "correction term" 7<u)x  will appear in the resulting 
equation as 7U ...... and so is inessential because Ux >> Uxx >> U ...... . Therefore, 
the equation for the mean field U is 

U,  + 0 . 2 ( U 4 ) , ~  = Vturb U .... (11) 
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where the turbulent viscosity is Vturb=(fl/2 - 1.72)~20. This equation 
describes the evolution of the mean field quite accurately; the results of a 
typical run are shown in Figs. 4 and 5. In contrast with the KSE (Figs. 1 
and 2), we used periodic boundary conditions for detailed simulation of the 
turbulent field, so boundary effects are absent and the approximation is 
correct throughout the domain. 

6. C O N C L U S I O N S  

So far we have averaged only nonlinear terms without derivatives, 
e.g., u 2. Almost the same approach allows one to average nonlinear terms 
including derivatives, e.g., uux.~. In this case we should use the joint 
invariant distribution p(u, ux). As well as p(u), it depends on ( u )  and 

( f ( u ,  u,~) ) = f f (u ,  v) p<,>(u, v) du dv - O ( ( u ) )  

The case with higher derivatives is obvious. 
Both the KSE and its modifications that we investigated have one and 

only one conserved quantity, namely u, associated with the integral of 
motion ~ u dx. It follows that the invariant distribution depends on ( u )  
and only on it. 

Obviously, if the dynamical system has N conserved quantities 
qt(u, u ...... ), i = 1,..., N, associated with integrals of motion ~ qi dx, then the 
invariant distribution depends on (q~)  ..... ( q x ) .  We will denote it as 
p(U, U ...... [ ( q ) l  ..... (q)N)" Therefore, in the statistically uniform case, the 
average nonlinear terms are evaluated as 

( f ( u ,  u ..... ) ) =  f f (u ,  v,...) p(u, v .... t ( q )l,..., ( q )~v) du dvd... 

= 45((q~ ),..., ( q N ) )  (12) 

To obtain a closed system we should derive, from the original equation, 
equations for conserved quantities. They take the form 

ot qi= ~x Ji 

where Ji(u, ux,...) are the corresponding fluxes. According to (12), the 
averages of the fluxes are ( J r ) =  crPi((ql ) ..... (qN)) ,  or, accounting for the 
influence of spatial gradients as in (7), 

# 
~Ji)  = ( P i ( ~ q l ) , - - ' ,  ( q N ) ) +  ~ ~i j~  x ( q j )  

j = l  



778 Ershov and Potapov 

which results in a closed system of macroscopic equations for Q i -  = (qi>: 

0 0 c~ 2 
~Q,=~x~bi(Q,, ..., QN)+ ~ flij-~x2 Qi 

j= 1 

Notice that (u> may not be among the mean fields <qi> and should be 
evaluated from them as 

( U > : ~ t ( ( q l )  ..... (qN>)+ ~ Y/j~ (qj) 
/ 1 

Unfortunately, we lack a system exhibiting chaos and possessing more 
integrals of motion than equations. The investigation of such systems 
would undoubtedly reveal more subtle and unexpected phenomena of 
macrodynamics. 

An opposite case is when there are no conserved quantities, as, say, 
in the reaction-diffusion systems 

u, = Au + f(u) 

In this case the invariant distribution is unique, and so for t > Tc (Tc is 
the "equilibration time" and is independent of initial conditions and 
the domain size) we will have <u>(x,t)=const. Such systems were 
investigated in ref. 8. 
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